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ABSTRACT

A new algorithm for identifying and characterizing vortices in complex flows is presented.

The scheme uses both the vorticity and pressure fields. A skeleton line along the center of a

vortex is produced by a two-step predictor-corrector scheme. The technique uses the vector
field to move in the direction of the skeleton line and the scalar field to correct the location in

the plane perpendicular to the skeleton line. A general vortex cross section can be concisely

defined with five parameters at each point along the skeleton line. The details of the method

and examples of its use are discussed.
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1 Introduction

Vortices are considered tile most important structures that control tile dynamics of flow

fields. Large-scale vortices observed in atmospheric and oceanographic flows are responsible

for ozone holes, hurricanes, tornadoes, and maelstroms. Vortices that are shed fi'om aircraft

canaMs, wings, and control surfaces affect the handling characteristics of the airplane and

determine the closest safe following distance of other aircraft. On a smaller scale, vortices are

the fundamental building blocks of turbulent flow structures and are intimately connected

with the mixing of chemical species, heat transfer, and drag forces.

Although the term "vortex" connotes a similar concet)t in the minds of most fluid dynam-

icists, a precise definition is difficult to obtain. Robinson [1] suggests the following working

definition: "A vortex exists when instantaneous streamliues mapped onto a plane normal to

the vortex core exhibit a roughly circular or Slfiral pattern, when viewed fi'om a reference

frame moving with tile center of the vortex core." Unfortunately, this definition requires a

knowledge of the vortex core before one can deter,nine whether something is a vortex. In

practice, Robinson [2] and Robinson, Kline, and Spalart [3] use the above rigorous definition

to confirm that a particular structure is, h, fact, a vortex. Regions of low pressure are used

to identify caudhlate vortices. Their scheme exploits the fact that the pressure in the core of

a vortex is lower than that of tile surrounding fluid. A radial force is needed to provide the

centripetal acceleration that keeps a particle rotating about an axis. In tile case of vortices,

this force is in tile form of the pressure; the pressure inside a vortex is lower than the pressure

outside the vortex. Robinson and his colleagues find that elongated low-pressure regions in

hmompressible turbulent flows almost always indicate vortex cores, but these surfaces can

be digicult to characterize and provide no information in regard to the sense of rotation or

the connectivity between the structures.

Moin and Kim [4] and Kim and Moin [5] use vorticity lines (sometimes called vorticity

feld lines or vortex lines) to visualize vortical structures in turbulent channel flow. A vorticity

line is everywhere parallel to tile local vorticity vector and is defined by

d£ ¢3
_ (1)

where .5 = V × ff is the vorticity vector, ff is the velocity vector, £ is the location in space, and

s is tile distance ahmg the vorticity line. Tile definition suggests that vorticity lines should

go through the cores of vortices, which is usually the case. llowever, the resulting vortex

lines are extremely sensitive to the choice of initial location for the integration. As bAoin and

Kim [4] point out, "If we choose £0 arbitrarily, the resulting vortex line is likely to wander

over the whole flow field like a badly tangled fishing line, and it would be very difficult to



identify tile organizedstructures(if any) through whichthe line may havepassed."Kim and

Moin [5] illustrate tile potential tangle in their Fig. 2. To avoidsucha confusingjumble, they

carefully select tile initial points (inside suspectedvortices) and focusoll specificparts of

tile resultant lines to illustrate someimportant featuresof turbulent channelflow. However,

Robinson[1] showsthat evenexperiencedresearcherscanbesurprisingly misledby ordiuary

vorticity lines.

Villasenor and Vincent [6] presentan algorithm for tile recognitionand visualizationof

elongatedvortices in three-dimensionaltime-dependentflow fiehts. They start from a seed

point and compute the averagelength of all vorticity vectors contained in a small-radius

cylinder. The axis of the cylinder extendsfrom tile seedpoint to the surfaceof a sphere

centeredabout the seedpoint. They repeat this step for a large number of cylinders that

emanatefrom tile seedpoint. Tile cylinder with the maximumaveragevorticity vector length
becolnesa segmentof the vortex tube. This processis repeateduntil the vorticity decreases

enoughto end tile vortex tube. Becausethe schemedependsonly on the magnitude of

the vorticity vectorsrather than their direction, the algorithm must limit tile anglebetween

adjacentlinesegmentssothat thenewlinesegmentis differentfrom thepreviouslinesegment
traced in the oppositedirection. All vorticity vectorsinside the vortex tube aredrawn. The

processcan be repeatedfor multiple time stepsso that the evolution of the vortex tubes is

visualizedasa sequenceof all storedvorticity vectors. Villase,mrand Vincent [6] claim that

the useof only the magnitudesand not the directionsof the vorticity vectorsisadvantageous

becauseit allows the algorithm to find structures that do not haveaxesaligned with tile

principal axis of the structure. As a consequence,the algorithln can inadvertently capture

structures that are not vortices. In addition, by visualizing all vectors that are inside the

cylinder, structures are included that are not part of the vortex originally intended to be

viewed. A,l examplecanbesee,,in Fig. 4(c) of Villasenorand Vincent [6], in whichanother

structure is responsiblefor someof the vorticity vectors that are almost orthogonal to the
vortex axis.

Zabusky,Boratav, Pelz,Gao, Silver, and Cooper [7] fit ellipsoidsto surfacesof constant

vorticity 103[and to constant vortex stretching 103.v l/1031 in an effort to understand tile

dynamics of a vortex reconnection process. A bundle of vector field lines of the vorticity

03 and tile vortex stretching 03. Vff e,nanate from the major and minor axes and from tile

center of the minor ellipse of the respective fitted ellipsoids. Both tile ellipsoids and the

vector field lines provide useful information about the vortices for their flow field, which

contains neither solid boundaries ,,or a mean straining field. In flows with these additional

complications, the regions with large vorticity magnitudes do not necessarily correspond to

vortices; hence, ellipsoids of constant vorticity coupled with vorticity lines are unlikely to



provideusefulcharacterizations.
Chong, Perry, and Cantwell [8] addresstile questionof when a region of vorticity is

a vortex. They suggestthat a vortex core is a region where the velocity-gradient tensor

hascomplexeigenvalues.In sucha region, the rotation tensordominatesover the rate-of-

strain tensor. Sofia and Cantwell [9] usethis approachto study vortical structures in free-

shearflows. At thosepoints at which the vorticity magnitude exceedsa specifiedfraction

of tile maximum vorticity, the eigenvaluesof the velocity-gradientmatrix are determined.

Thoseregionsthat haveconlplexeigenwduesand satisfy the vorticity-threshold criterion are

renderedas solid surfacesthat representtile vortices in the flow. This method correctly

identifiesthe large vortical structures in the flow. l|owever, the method clutters the picture

with manysmallerstructuresand doesnot provideaway to link the smallervortical volu,nes

with the largercoherentvorticesof which they might be a pa,'t.

Yatesand Chapman[10]carefully exploretwo definitions of vortex cores.Onedefinition
associatesa vortex corewith a streamlineof minimum curvature within a regionof spiraling

streamlines. The other definition regardsthe vortex coreas the line definedby the local

maxima of normalizedhelicity. Under certain circumstances,both definitions produce the

samevortex core. Unfortunately, all of the analysesand conclusionsare appropriate only

for steady flows.

Bernard, Thomas, and llandler [11] usea semiautomatedprocedureto identify quasi-

streamwisevorticesin the near-wallregionof turbulent-channel-flowdirect-nulnerical-simulation
data. Their method finds local centersof rotation in user-specifiedregionsin planesperl)en-

dicular to the streamwisedirection. The local centersof rotation are linked to corresponding

centersin adjacentstreamwise-normalplanesto forln a vortex-coreline. The resultsof their

work indicate that experienceduserscan correctly tim[ essentiallyall critical vortices re-

sponsiblefor the maintenanceof the Reynoldsstress, llowever, their lnethod fails to capture
vorticeswith axesthat arenot nearly alignedwith tile streamwisedirection. This shortcoln-

ing can be a major difficulty for flowssuchas free-shearlayersand transitional boundary

layers,in which both st,eamwise-and spanwise-orientedvorticesare important. In addition,

the proceduredependsheavily on user intervention to indicate regionswherethe program
shouldsearchfor centersof rotation. This processis tedious,and the detailed resultsdepend

upon nonquantifiablewhimsof the user.

tlere, wepresenta new approachfor identifying and characterizingvortices in complex
flow ileitis. Rather than a dependenceupon a single quantity to define the vortex, the

new approachis a predictor-correctormethod that convergesto tile vortex skeletons(the

lines that passthrough the vortex cores). In section 2, we describehow tile new method
determinesthe vortex skeletons. In section 3, we discussSOlnenovel vortex cross-section



schemes that put meat on tile skeleton lines, and we sunnnarize our findings in section 4.

2 The vorticity-predictor pressure-corrector method

Our new predictor-corrector method produces an ordered set of points that approximates

the skeleton of a vortex. Associated with each point are quantities that describe, the local

characteristics of the vortex. These quantities may include the vorticity, the pressure, cross-

sectional information, the circulation, and other quantities of interest.

The new method produces lines that are similar to vorticity lines. However, because a

distinction exists between tile vorticity, which is a mathematical function of the instantaneous

velocity field, and a vortex, which is a physical structure wit[l coherence over a region of

space, the straightforward integration of the vorticity lines must be modified to locate the

skeleton lines associated with individual vortices. At tile very least, because vorticity lines

can begin and end only at domain boundaries and vortices have no such restriction, we must

develop criteria for initiating and terminating the integration. In addition, the method must

be self-correcting (i.e., line trajectories that diverge from the vortex core shouhl be subject

to a restoring (correcting) force).

In this section, we will first discuss the procedure used to find an initial point on the

vortex-core skeleton. Then we will reveal the details involved in growing the vortex-core

skeleton from the seed point. Finally, tile termination of the vortex skeleton will be addressed.

2.1 Finding a seed point

Any flow-field information call be used to find starting locations for tile predictor-corrector

process. Tile pressure and the vorticity magnitude are convenient scalars for choosing seed

points. Ill our work, the flow field is scanned in planes perpendicular to the streamwise

direction. The scanning direction affects the order in which vortices are located, but not the

overall features of the vortices. Ill each plane, the values of the pressure and the vorticity

magnitude are checked. Threshold values call be chosen a priori, or they can be a l)redeter -

mined fraction of the extrema. If the pressure is less than the pressure threshold and the

vorticity magnitude is greater than its threshold, then the point location is further refined.

In our implementation, this positional refinemellt shifts the seed point to the location of the

local pressure minimum in the l)lane l)erpendicular to the vorticity vector. (The rationale

for this refinement will be discussed later.) The saml)ling can be done at every grid point.

We experimented with sampling at every second, third, and fourth points. Although a test

of each grid point to determine if the specified pressure and vorticity criteria are inet is not

expensive, we had hoped that sampling for seed 1)oints on a coarser mesh would eliminate



tile multitude of redundant vortices that we found. Global coarsening of tile grid does not

uniformly eliminate tile problem; some of the redundancies are avoided, but others remain.

A better method for eliminating the redundant vortices involves the selective elimination

of grid points from the supply of t)ossible seeds. Elements of a three-dilnensional integer

array correspond to volumes about each grid point. All of the elements are originally set

to zero. For the first vortex, any point in the flow field may be evaluated as a potential

seed point. As points are added to tile vortex skeleton, the elemeuts of the integer array

associated with the points are llagged. The flagged points will not be available as seeds

for subsequent vortices. Although many coincident vortices are eliminated in this way, a

further reduction can be achieved by also flagging elements of the array that correspond to

points that are within tile vortex cross section. In Fig. 1, multiple skeleton lines started from

different seed points all pass through the same vortex tube. Tile redundancies are eliminated

when points inside a tube are excluded from the pool of future seed points.

2.2 Growing the skeleton

Once a seed 1)oint has been selected, the skeleton of the vortex core can be grown from

this point. The scheme that we have developed is a two-stage predictor-corrector method.

With this technique, the next l)osition of the vortex skeleton is predicted by integrating

along the vorticity vector. This candidate location is corrected by adjusting the position

to the pressure minimum in the l)lane that is perpendicular to the vorticity vector. To

ensure that the minimum is actually part of the vortex under consideration, only a limited

angle between the vorticity vectors at the predicted and the corrected point is allowed. 1

The continuous modification of the vorticity-line location lessens the sensitivity to both the

initial conditions and the integration details. These sensitivities are common problems in

vorticity-line calculations. Just as importantly, tile corrector stage decreases the influence

of background mean shear and small-scale vorticity fluctuations on the identification of the

vortex cores. The identified vortex skeleton corresponds more closely to what one might

intuitively choose as the vortex skeleton than to the standard vorticity-line result.

The modified vortex-line scheme is illustrated in the schematic diagrams of Fig. 2 and is

also summarized in t)seudocode below.

IThis differs from the angle limitation imposed by Vill,_senor and Vincent [6]. They restrict the change
in direction of the skeleton line along tim center of the vortex tube from one point on the skeleton line to
the next. We restrict the change in the direction of the vorticity vector from the predicted location to the
corrected location.
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For each remaining seed point

If the seed point Po is not in any previous vortex

Whi|e the vortex skeleton continues

I. Determine vorticity uSi at Pi

2. Integrate vorticity to find Pi+l (predictor)

3. Determine vorticity Wi+l at P;+l (corrector)

4. Find location Pi+l of minimum pressure in

plane perpendicular to wi+1 at fii+l

5. Calculate quantities of interest at ;_,+i

6. i_i+l

The calculation of tile vortex skeleton proceeds both forward and backward from tile seed

point. The details for continuing the calculation from one point to the next are indicated

by the numbered items in the pseudocode. Processes 1 and 2, which are shown in Fig. 2(a),

represent the predictor stage of the algorithm. The corrector stage is summarized by pro-

cesses 3 and 4, which are illustrated in Figs. 2(b) and 2(c). We iterate the corrector stage so

that the pressure at position Pi+l is the local minimum in the plane perpendicular to 03i+l.

We restrict the movement in the corrector steps by limiting the angle between 03i+1 and 03i+1.

The resultant state, which is illustrated in Fig. 2(d), is equivalent to that in Fig. 2(a), except

that the index i + 1 replaces tile index i.

The effectiveness of the predictor-corrector scheme is illustrated in Fig. 3, in which data

from the direct numerical simulations of Singer and Joslin [12] are analyzed. The transparent

vortex tube is constructed with data from the full predictor-corrector method. Its core is

indicated by the darker skeleton. The lighter skeleton follows tile uncorrected integral curve

of the vorticity. It is obtained by disabling the corrector phase of the scheme. The vorticity

line deviates from the core, exits the vortex tube entirely, and wanders in the flow field.

Although the general behavior of the predictor-corrector algorithm is reliable and robust,

optimal performance of the technique requires careful attention to implementation details.

The remainder of this subsection addresses issues that are important to the successful use

of this method.

2.2.1 Eliminating feeder vortices

Because tile vorticity near tile edge of a vortex may be skewed with respect to tile vorticity at

the vortex center, the location of the pressure minimum in the plane perpendicular to the edge

vorticity might not be in the vortex center. This potential mismatch of the pressure-minimum
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and the vortex-centerlocations is rarely a problem in the vortex skeleton-linecalculations

becausethe predictor-corrector method inhibits large excursionsfrom tile vortex center.

llowever, a seedpoint might be selectednear tile vortex edge. In this case,adjustment of

the point location to the pressureminimmn might still result in a point that is far from the

vortex center. Thesesituationsresult in small "feedervortices" that spiral toward the vortex

center. Examplesof feedervorticesareillustrated in Fig. 4. We found that wecaneliminate

mostof thesefeedervorticesby taking advantageof the asymmetryof the predictor-corrector

method. In either forward or backwardmode, the predictor-correctorschemewill converge

to a vortex center. Wecan eliminate the feedervorticesby redefiningthe initial point (i.e.,

the point at which westart recordingthe elementson the skeletonline) to be the location

after a fixed number (usually5 to 10)of predictor-correctorsteps. If the original seedpoint

is locatedon the vortex core, the methodwill return to the seedon the backwardintegration

path. llowever, if the original seedpoint is located on a feedervortex, then the backward

integration will missthe original seedpoint and the skeletonof the feedervortex. Instead,

the retraced skeletonline will closely follow the vortex center. Although the useof many

integration points beforethe initial point will eliminate feedervortices,this practice will also

limit the minimum extent of any detectedvortices.

2.2.2 Numerical considerations

Neither the pressureminimum nor the result of the vorticity-line integration is likely to

be on a grid point; hence, we must choosean interpolation schemeto find the pressure
and vorticity at arbitrary locations in the tlow fiehl. Our first experimentswith trilinear

interpolation werea disappointment. No local extrema could be found betweentwo points

connectedby a straight line. To allow the local pressu,'eminima to exist in the interior of a

grid cell, a higherorder interpolation methodis necessary.Second-orderinterpolation would
usethreegrid points: two from one sideof the desiredlocation and one from the other side.

To reduceanybiasfrom the interpolation, a four-point Lagrangeinterpolation is usedin each
of the three coordinatedirections. When the outer points of 'the four-point method are not

in the domain, two-point Lagrange (linear) interpolation is used. The complete interpolation

scheme works quite well, although it requires more computer time than any other subroutine

in the computer program.

The vorticity integration can be performed with a variety of methods. First, we used a

fourth-order Runge-l(utta approach. This produced satisfactory results; however, step-size

optimization was dill]cult to automate. Instead, we developed a new technique whereby the

point-to-point distance in the vorticity integration is always equal to the smallest dimension

of the local grid cell. The new point location is found by advancing this distance in the



direction of tile local vorticity vector. This procedure ensures that successive points will not

be more than one grid cell apart, so that if tile original calculation is well resolved, then tile

vorticity-line calculation will also be sufficiently resolved. Tile procedure also reduces the

chance of wasting many calculations inside a single grid cell.

2.2.3 Pressure-minimum corrector step

Tlle pressure-minimum correction scheme uses tile method of steepest descent to find the

local pressure minimum in tile plane perpendicular to tile vorticity vector. First, the vorticity

vector at the candidate point is determined by interpolation from tile surrounding grid points.
%

Two perpendicular unit vectors f and ) (Fig. 5) are determined in the plane normal to the

vorticity vector. Tile smallest grid-cell dimension d is used as a local length scale to find

two points in the plane in the f and ) directions. Tile pressures at these two points and

the current point are used to form tile in-plane pressure-gradient vector. A sample point

is chosen at a distance d from the current point in the direction opposite to the pressure-

gradient vector. If the pressure at the new sample point is less than the pressure at the

current point and the clot product of the vorticities at the sample and current points is

greater than a specified value (0.90-0.95 works well), then the new sample point becomes

the current location and the process is repeated. If the sa,nple point has a greater pressure

than tile current point, then tile distance d is halved and a new sample-point comparison

is made. If tlle orginal point is still tile point of minimum pressure after d has been halved

twice, then one last check for a possible minimum is made in the direction of the positive

gradient. (Rare circumstances with a great deal of symmetry can produce a pressure-gradient

vector that is in the wrong direction.) Failure to find any points with lower pressure leads

to acceptance of the current point as the next point on the vortex-core skeleton.

2.3 The end of the line

Vorticity lines extend until they intersect a domain boundary, but vortices typically begin

and end inside the domain, llere, we discuss some techniques for stopping the integra-

tion. One particularly clean termination occurs when the vortex cross section, which will

be discussed in the next section, has zero area. This approach provides smooth surfaces for

visualization with no abrupt vortex-tube cutoffs in the direction that is tangential to the

vorticity. Although we have used this line-termination technique successfully, the method

can fail to show commctions between parts of the same vortex. For instance, if a low-intensity

region exists between high-intensity regions of the same vortex, then tile low-intensity region

might not satisfy the criteria for a finite cross section. If both high-intensity regions have



finite cross sections, then the single vortex can be educed as two small disconnected vortices.

Although the criteria that define the lateral edge of the vortex call be weakened to ensure

that tile low-intensity region has a finite cross section, tile t)rol)lem can potentially reemerge

with a new w_rtex that is educed with the weaker cross-section criteria. Our resolution of

this problem exploits the asymmetric nature of tile predictor-correction method.

Because the predictor-corrector method will follow the core of a vortex regardless of tile

criteria used to define the vortex cross section, the vortex skeleton line is continued even

when the cross-sectional area of tile vortex is equal to zero. The vortex of interest can

either reintensify or dissipate. If the vortex reintensifies, then tile continuation of the vortex

skeleton line will provide a link between tile two more intense regions of ttle vortex. This

link call be visualized as a thread that connects tile two disjoint regions, o," the two regions

can simply Im rendered with the same color or texture. On the other hand, if the vortex

dissipates, then the vortex skeleton line continuation will wander through the flow fieht and

eventually either intercept a domain boundary or enter a new vortex. If a domain boundary

is reached, then the elements of tile vortex skeleton line that were computed after the cross-

sectional area became zero are discarded. These same points are also discarded if the vortex

skeleton line enters a new vortex with a nonzero cross-sectional area. To determine whether

tile new region of finite cross section is a continuation of tile original vortex or an entirely new

vortex, we lnarch the predictor-corrector schmne backwards for the same number of steps

taken since the previous region of nonzero cross section was exited. Some possible scenarios

are illustrated in Fig. 6. In Fig. 6(a), the skeleton line leaves the first vortex tube at point

P1 and continues for N steps until it encounters the second vortex tube at point I½. Tile

predictor-corrector schelue is then marched backwards N steps from & to P3. Tile distance

between points Pl and Pa is small relative to tile distance between & and P2 (a 10-percent

criterion is used); hence, tile link between P1 and 1½ is most probably a low-intensity vortex,

and we keep the thread between these vortex tubes, ltowever, in Fig. 6(b) the vortex tube

that ends at 1'4 continues to dissipate, and tile continuation of its skeleton line lacks clear

direction and wanders through the flow field. The line intercepts another vortex tube at l_s

after M steps. The predictor-corrector method is marched backwards M steps from l°s to

P6. Initially, tile reverse integration retraces tile forward integration, but halfway between

Ps and P6 tile two lines diverge rapidly and become uncorrelated. The distance from P4

to I_ is a large fraction of the distance from P4 to &, so tile algorithm concludes that tile

vortex tube intersected at Ps is di[ferent from tile vortex tube that ends at P4. The points

on tile vortex skeleton line that connect the two tubes are discarded, rind tile vortex skeleton

is terminated. Finally, in Fig. 6(c), the continuation of tile skeleton line of tile vortex tube

that ends at point Pr intersects the side of another vortex tube (shown as a wireframe) and



is immediately taken to the pressure minimum at Ps. The reverse integration for this case

is along the axis of the new vortex tube away from the original vortex. The point P9 is far

from Pr; hence, the two vortex tubes are distinct from each other and the line conuecting

them is discarded.

3 Putting meat on the bones

The determination of an appropriate vortex cross section has been one of the more difficult

practical aspects of this work. For isolated vortices, a simple pressure criterion to define the

edge of a vortex works quite well, although the information content of the visualization is

little more than that which is available from pressure isosurfaces. In regions where vortices

interact, tile pressure alone is inadequate. The low-pressure regions from two or 1note vortices

can merge and distort the radius estimate of any single vortex. A similar problem arises if the

vortex edge is defined in terms of vorticity magnitude. This particular difficulty is resolved

if the angle between the vorticity vector on the skeleton line and the vorticity vector at ally

radial position is restricted. Any angle greater than 90 ° indicates that the fluid at the radial

position is rotating in the direction opposite to that in the core. The vortex circulation F is

defined as

r = if) ('2)
JY S

where _ is a unit vector normal to the surface S; dA is an area element on the surface

S; and S is a cross-sectional surface of the vortex. The vortex circulation increases as the

cross-sectional area increases, provided that the angle between the vorticity vector at a given

radial position and the vorticity vector on the skeleton line is less than 90 °. This observation

suggests the use of the 90 ° variation in vorticity vectors as a single vortex-edge criterion.

Unfortunately, in a uniform shear flow, this criterion results in an infinite cross section

because the vorticity at all radial locations is the same. In practice, we have found that the

90 ° restriction works well in combination with a low-pressure criterion for the vortex edge.

For the actual computation of tile radial distance, the pressure and the vorticity must be

sampled along a number of radial lines perpendicular to the vortex skeleton line. We sample

at an increment that is equal to the minimum grid-cell dimension at the skeleton line. The

dot product of the vorticity at the radial point with the vorticity on the skeleton line must be

greater than zero for the 90°-variation criterion to hold. At each position, this dot product

and the pressure are checked to ensure that they both satisfy tile respective requirements. If

either fails, the radial position along that line is the point of failure as determined by linear

interpolation between the two most recent sample points. By sampling along radial lines

that emanate from a point on the skeleton line, we implicitly require that the cross section

10



bestarlike (i.e., eachradial line will intersect the cross-sectionboundary only once.) Cross

sectionswith morecomplicatedgeometriesare truncated to a starlike form.

Relative measuresfor the vortex edgeare also possible. A relative measuredefinesthe

vortexedgeasthe positionat whichsomequantity decreasesbelowa specifiedfraction of its
valueon the skeletonline. Clearly, this measurewill alwaysgive a finite crosssection,and
the crosssectioncanbecomeinfinite in a uniform shearflow. We havefound that relative

measuresarenot as informative asthe absolutemeasures.

The characterizationof tile crosssectioncan take many forms. The detailed aspectsof

the data are most nearly recoveredif the radial location of the vortex edgeis retained at

many closelyspacedazimuthal angles. If the radius of the crosssection were sampledat
10° increments in the azimuthal direction, then 36 radial distancesand a referencevector

at everyposition along the vortex skeletonline would needto be stored. For the minimal-

storage approachthat providescharacteristiccross-sectionalinformation, all of the radial

distancesareaveragedto obtain a singlescalarradius. No referencevector is neededif only

the radius is used,so this simple method usesthe least amount of storage. We havefound

that the radius is a very good cross-sectiondescriptor for isolatedvortices. When vortices

beginto interact, the radiusdoesnot provideagooddescriptionof the asymmetricdistortion
experiencedby the w_rtices. Ilowever,the first few coelIicientsof the Fourier seriesof the

radial locationsprovidesa convenientcompromisebetweentile simple radius approachand

a full description of all radial locations. The seriesareeasy to compute,easy to interpret,

and allow a large rangeof cross-sectionalshapes. In our work, we keepthe constant term

(which is the radius), the first and secondsineand cosinecoelticients,and a referencevector.
Most of the casesthat we havecheckedhavea factor-of-10drop in the magnitude of the

first and secondcoelticieuts,a fact that suggeststhat the seriesis convergent. Figure 7

illustrates a single crosssectionof a vortex educedfrom direct numerical simulation data.
41'

The shaded region represents the interior of the vortex tube, the boundary of which was

determined by sampling along lines that radiate from the cross (which marks the skeleton-

line location) at 1° intervals. The dashed line is a circle centered about the skeleton-line

location with the averaged radius of the vortex tube. The solid line is the two-term Fourier

series representation of the vortex cross section. Note how the vortex boundary represented

by the Fourier series more nearly shows both tile eccentricity and the flattening of the vortex

tube comt)ared to the circular cross section.
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4 Conclusions

The innovative use of a two-step predictor-corrector algorithm has been introduced to educe

vortices from flow-field data. Rather than relying on any single quantity to determine the

vortex skeleton line, the new method uses vorticity to predict the new location of the next

element along tile line and then corrects this location by using the pressure field ill the

plane perpendicular to tile vorticity vector. The prediction stage resembles a portion of

a vorticity-line calculation; the correction stage maintains the line near the vortex center.

Unlike other approaches, our method is able to treat the skeleton line through the vortex

core as an attractor in the flow field.

To make the method work in all but the simplest flow fields, lmmerous side issues,

which are common to all techniques that grow a skeleton line from seed points, must be

addressed. This paper discusses a number of novel approaches that we have developed to

deal with matters such as seed-point selection, feeder-vortex elimiuation, vortex skeleton-

line termination, and vortex cross-section description. Sample extractions of vortices from

various flow fields illustrate the different aspects of the technique.

The predictor-corrector technique presented here can identify vortices in flow fields that

are far more complex than those that we have used here for illustration purposes. An

extension of the direct numerical simulation of Singer and Joslin [12] provides one of the more

interesting flow configurations that we have considered. The predictor-corrector algorithm

educes a complex tangle of many interconnected vortices that are visualized in Fig. 8. All of

the implementation features discussed above are used to identify the vortices in this messy

flow field.

Although many modifications can be made to the basic scheme, the principle of using a

vector field to predict the location of the next point and a scalar field to correct this position

distinguishes this method from others.
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Figure 1: Multiple realizations of same vortex tube from different seed points.
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Figure 2: Schematic of predictor-corrector algorithm. (a) Vorticity u3_ is used to predict

candidate point 15i+l. (b) Pressure is determined in plane perpendicular to vorticity c3_+1.

(c) New point on skeleton line pi+t is corrected to pressure minimum in plane perpendicular

to vorticity c5i+1. (d) Repeat at point pi+l.
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I
Vorticity Predictor-

Corrector

Figure 3: Standard vorticity lines are compared with results from predictor-corrector scheme.

Both results use same flow data and same computer code. Standard vorticity lines are

obtained by disabling corrector portion of program. Transparent tube is constructed from

data from predictor-corrector method.

Figure 4: Feeder vortices merge with a large-scale hairpin vortex. Points that satisfy seed-

point criteria exist on edge of vortex tube. They curve inward toward centerline and then
follow main skeleton line.
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%

Figure 5: Position correction using local pressure field. Orthogonal unit vectors f and _ are

in plane perpendicular to vorticity vector. Method of steepest descent is used to locate local

pressure lninimum.
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Figure 6(a).

Figure 6(b).

t'r
Figure 6(c).

Figure 6: Schematic of line-termination procedure. (a) Forward integration from P1 to P2

gives approximately same path as reverse integration from P2 to Pz, so points /°1 and P2

are connected by weak vortex. (b) Forward integration from 1°4 to P5 differs markedly from

reverse integration from Ps to Pn, so vortex terminates at P4. (c) Forward integration from

Pr to Ps intersects the side of new vortex tube (shown as wireframe). Reverse integration

from Ps to P9 goes along axis of new vortex away from original tube. Distance from Pr to

P9 is large, so two vortices are not linked.
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Jr" Skeleton point

....... Average radius
2-term Fourier series

1 deg sampling

Figure 7: Comparison of different ways to represent, vortex cross section. Central cross in-

dicates point on skeleton line. Finely sampled vortex cross section is represented by shaded

region. Dashed line is circle with averaged radius. Solid line is two-term Fourier representa-

tion of vortex cross section.
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Figure 8: Many interacting vortices are educed from direct numerical simulation data with

predictor-corrector algorithm.
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